Analisis Curah Hujan Esktrim Menggunakan Teori Nilai Ekstrim untuk Mengidentifikasi Perubahan Iklim
Abstract
Daily, monthly, or annual rainfall data are usually analyzed through time series modeling, whose main purpose is for forecasting. Extreme rainfall data in time series analysis was overcome by robust method to improve model parameter estimation, but not analyzed further; Such as identifying climate change. In this paper we will examine the problem of extreme value analysis of rainfall specifically. The analysis includes determining the distribution of extreme values by Peak Over Threshold. Analysis of extreme values of rainfall will be applied to daily rainfall data obtained from Jatiwangi station of Majalengka district of West Java province, from January 1985 to December 2010. The aim is to identify climate change from January 1985 to December 1997 period January 1998 to December 2010 based on the rainy season, drought, and transition. The analysis shows that there is climate change during the rainy season, while in dry season and transition there is no climate change.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aldrian, E. dan Susanto, R.D. (2003). Identification of Three Dominant Rainfall Region within Indonesia and their Relationship to Sea Surface Temperature. International Journal of Climatology. Wiley InterScience.
BMKG. (2011). Analisis Hujan Bulan Oktober 2011 dan Prakiraan Hujan Bulan Desember 2011, Januari 2011, dan Februari 2012. Provinsi DKI Jakarta.
Chaves, D.V., dan Embrechts, P. (2002). Smooth External Models for Operasional Risk. Financial Valuation and Risk Management Working Paper Series. 135.
Coles SG. Dan Tawn JA. (1996). A Bayesian Analysis of Extreme Rainfall Data. Apllied Statistics. 45:463-478.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag.
Daniel, W. (1989). Statistika Nonparametrik Terapan. Jakarta : PT Gramedia.
Gilli, M. dan Kellezi, E. (2006). An Apllication of Extreme Value Theory for Measuring Financial Risk. Computational Economics. 27:207-228.
Hosking, JRM. Wallis JR., dan Wood EF. (1985). Estimation of the Generalized
Extreme Value Distribution by the Method of Probability-Weighted Moments.Thecnometrics. August 1985. Vol. 2. No. 3. Hal. 251-261.
Lakitan, B. (2002). Dasar-Dasar Klimatologi. Cetakan Kedua. Jakarta : Raja Grafindo Persada.
Omey, E., Mallor, F., dan Nualart, E. (2009). An Introduction to Statistical Modeling of Extreme Values Application to Calculate Extreme Wind Speeds. Hogeschool Universiteit Brussel.
Perteson, L., dan G. Haug. (2005). Climate and the Collapse of Maya Civilization : A series of multi-year drought helped to doom an ancient culture. Sigma Xi, The Scientific Research Society.
Rahayu, A. (2011). Estimasi dan Pengujian Distribusi Generalized Extreme Value (GEV) (Studi Kasus : Identifikasi Perubahan Iklim di Jawa).Institut Teknologi Sepuluh Nopember Surabaya.
Sadik, K. (1999). Pemodelan Nilai Ekstrim Terampat untuk Proses Lingkungan (Studi Kasus pada Curah Hujan Harian)[Tesis]. Bogor (ID): Institut Pertanian Bogor.
Sugiyono. (2005). Statistika Nonparametrik untuk Penelitian. Bandung : Alfabeta.
World Climate Conference. (1979). A Conference of Experts on Climate. Proceedings World Climate Conference 12-23 February 1979: Geneva.
DOI: http://dx.doi.org/10.29313/.v0i0.8347
   Â