Studi Pengaruh Waktu Proses Torefaksi dan Kadar Air terhadap Karakteristik Produk Torefaksi Batubara Peringkat Rendah di Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara “Puslitbang tekMIRAâ€

M Liana Rahmy, Slamet Handoko, Pramusanto Pramusanto

Abstract


Abstrack. Indonesia have moreless 60% of the coal reserves constitute low quality coal (Lignit) with a caloric content of <5100 cal/gr. Based in government regulations (PP) no 23 of 2010 on the Implementation of Mineral and Coal Mining Activities, to be able to increase added value for mineral and coal commodities. Coal has the opportunity to do increased coal through the technology that one of them exists is the torefaction process. Torefactions constitute a heat treatment at temperatures of 200°C-300°C in atmospheric pressure in the absence of oxygen, with a caloric-valued solid fuel end product equivalent to sub-bitumunus C. Torefact testing where this experiment was conducted at the “Technological and Coal Center for Research and Development tekMIRAâ€. Torefaction experiments used two coal feeds with different water content. Testing is performed beginning with a stage of preparation where the grain size used is -3 +6 mesh. Later on temperature torefaction testing used was 300°C with variations of stay time used for 30 minutes, 60 minutes, 90 minutes, and 120 minutes. The results of torefactory testing products are char, liquid, and gas. From the test results using feed 1, optimum stay time in the torefaction process at 120 minutes, due to char mass yields of 50,432 gr, gas yields of 4,311gr, and liquid yields of 15,257 gr. Whereas in the feed condition 2 the best residence time of the torefaction process is 90 minutes, due to mass yield 56,433 gr, gas yield 3,863 gr, and liquid yield 9,704 gr. Effective feed in the use of the torefaction process that is feed 2. It is because of the higher caloric value of 6001 cal/g, char mass product of 56,433 gr, gas product of 3,863 gr, liquid product of 9,704 gr.

Keywords: Torefaction, Residence Time, Feed, Mesh, Char, Calor

Abstrak. Indonesia memiiki lebih kurang 60% dari cadangan batubara merupakan batubara kualitas rendah (Lignit) dengan kandungan kalori sebesar <5100 kal/gr. Berdasarkan peraturan pemerintah (PP) no 23 tahun 2010 tentang Pelaksanaan Kegiatan Usaha Pertambangan Mineral dan Batubara, untuk dapat meningkatkan nilai tambah bagi para komoditas mineral dan batubara. Batubara memiliki peluang untuk dilakukan peningkatan batubara melalui teknologi yang ada salah satunya adalah proses torefaksi. Torefaksi merupakan suatu perlakuan panas pada temperatur 200°C-300°C dalam tekanan atmosfer tanpa adanya kehadiran oksigen, dengan produk akhir bahan bakar padat bernilai kalor setara dengan sub-bituminus C. Pengujian torefaksi dimana percobaan ini dilakukan di Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara “Puslitbang TekMIRAâ€. Percobaan torefaksi menggunakan dua umpan batubara dengan kandungan air yang berbeda. Pengujian dilakukan diawali dengan tahapan preparasi dimana ukuran butir yang digunakan adalah -3+6 mesh. Kemudian pada pengujian torefaksi temperatur yang digunakan adalah 300oC dengan variasi waktu tinggal yang digunakan selama 30 menit, 60 menit, 90 menit, dan 120 menit. Dari hasil pengujian menggunakan umpan 1, waktu tinggal yang optimum dalam proses torefaksi pada 120 menit, karena hasil massa 50,432 gr, hasil gas 4,311gr, dan hasil cair 15,257 gr. Sedangkan pada kondisi umpan 2 waktu tinggal terbaik proses torefaksi yaitu 90 menit, karena hasil massa 56,433 gr, hasil gas 3,863 gr, dan hasil cair 9,704 gr. Umpan yang efektif dalam penggunaan proses torefaksi yaitu umpan 2. Hal tersebut dikarenakan nilai kalor lebih tinggi sebesar 6001 kal/g, produk massa arang sebesar 56,433 gr, produk gas 3,863 gr, produk cair 9,704 gr.

Kata Kunci: Torefaksi, Waktu Tinggal, Umpan, Mesh, Arang, Kalor


Keywords


Torefaksi, Waktu Tinggal, Umpan, Mesh, Arang, Kalor

Full Text:

PDF

References


Basu, P., 2010, “ Biomass Gasification and Pyrolysis Practical Design and Theory â€, Elsevier, New York.

Basu, P., 2013, “ Biomass Gasification, Pyrolysis and Torrefaction, Elsevier, San Diego

Carlos F. Valdés and Farid Chejne , 2018, “Fast Pyrolysis Of Coal Particles In A Novel Hot Plate Reactor: Implications Of The Reaction Atmosphere On The Reactivity And Char Chemical Structureâ€, Universidad Nacional De Colombia, Colombia. Design andTheory â€, Elsevier, New York

Dong Kyoo Park dkk, 2009, “Co-Pyrolysis Characteristics Of Sawdust And Coal Blend In TGA And A Fixed Bed Reactorâ€, Korea Advanced Institut Of Science And Technology, Korea. Elsevierâ€, San Diego.

Ferrara, F., et, al, 2014, Pyrolysis of Coal, Biomass and Their Blends : Performance Assessment by Thermogravimetric Analysis, Italy.

Gale, Thomah K., 1994, Effects of Pyrolysis Conditions on Coal Char Properties, Department of Mechanical Engineering, Brigham Young University.

Henrik Tolvanen, Lauri Kokko, Risto Raiko, 2012, “ Fast Pyrolysis Of Coal, Peat, And Torrefied Wood: Mass Loss Study With A Drop-Tube Reactor, Particle Geometry Analysis, And Kinetics Modelingâ€, Tampere University Of Technology, Finland.

Horne. 1978 dan Allen G.P Chambers. 1976. Sedimentation in the Modern and Miocene Delta. IPA

J. Solar*, I. de Marco, B.M. Caballero, A. Lopez-Urionabarrenechea, N. Rodriguez, I. Agirre,A. Adrados, 2016, Influence of temperature and residence time in the pyrolysis of woodybiomass waste in a continuous screw reactor, Spain, Elseveir.

Jenny Rizkiana dkk, 2018, “Hybrid Coal: Effects Of Composition And Co-Pyrolysis Retention Time In Low Rank Coal And Biomass Waste Co-Pyrolysis Process On The Product’s Yieldâ€, Institut Teknologi Bandung, Bandung.

Kirk, R.E. and Othmer, D.F., 1952, Encyclopedia of Chemical Technology, 3rded., Vol. 6, The Inter Science Encyclopedia, Inc., New York.

Li, Qian., et, al, 2017, Pyrolysis Characteristics and Evolution of Char Structure during Pulverized Coal Pyrolysis in Drop Tube Furnace : Influence of Temperature, China.

Li Zhang, Shaoping Xu, Wei Zhao, Shuqin Liu, 2006, “Co-Pyrolysis Of Biomass And Coal In A Free Fall Reactorâ€, Dalian University Of Technology, China.

Pahla, G, Ntuli, F., Muzenda, E, 2018, “Torrefaction Of Landfill Food Waste For Possible Application In Biomass Co-Firingâ€, South Africa, Elseveir.

Raclavska. H, dkk, 2019, “Effect Of Impregnated Potassium On Bomass Torrefaction†Taiwan, Elseveir.

Speight, J. G., 2005. “Handbook of Coal Analysisâ€. Wiley Interscienc, Hoboken, New Jersey.

Zhao Bin, dkk, 2017, “Effect Of Pyrolysis Temperatur, Heating Rate, And Residence Time On Rapeseed Stem Derived Biocharâ€, Journal of Cleaner Production.




DOI: http://dx.doi.org/10.29313/pertambangan.v6i2.24698

Flag Counter