Sintesis Tetrapeptida MeFYAP (mePhe-Try-Ala-Pro) dengan Metode Solid Phase Peptide Synthesis debagai Kandidat Antioksidan
Abstract
ABSTRACT: Free radicals are molecules that are unpaired in their outer orbitals, free radical activity can be inhibited by antioxidants by binding and stabilizing the free radicals. Antioxidant peptides are able to ward off free radicals, one of the peptides derived from natural ingredients is the tetrapeptide FLAP (Phe-Leu-Ala-Pro) and one of its derivatives (mePhe-Try-Ala-Pro) which has been successfully modified from Sea Cucumber (Acaudia Molpadiodes) in Zheijing China. So that the tetrapeptide has the potential to be developed as an antioxidant. Isolation of peptides from nature requires large amounts of raw materials so it is considered less efficient. Therefore, in this study, a more efficient and environmentally friendly tetrapeptide (mePhe-Try-Ala-Pro) was produced, namely the solid phase synthesis method or (SPPS) with the Fmoc amino acid strategy using 2-chlorotrityl chloride resin with the help of HOBt, HBTU and reagents. DIPEA. The results showed that the synthesis was successful with the resulting tetrapeptide weight of 143.7 mg. However, based on the results of the characterization using a mass spectrophotometer and RP-HPLC, it was found that there were still impurities that needed further purification. Furthermore, the results of the antioxidant activity test on the tetrapeptide compound showed that the compound had a percent IC50 value of 17.677% indicating that the antioxidant activity of the compound was weak.
Keywords: Antioxidant, tertapeptide, solid phase peptide synthesis (SPPS)
ABSTRAK: Radikal bebas adalah molekul yang tidak berpasangan pada orbital terluarnya, aktivitas radikal bebas dapat dihambat dengan antioksidan dengan cara berikatan dan menstabilkan radikal bebas tersebut. Peptida antioksidan mampu menangkal radikal bebas, salah satu peptida yang berasal dari bahan alam adalah tetrapeptida FLAP (Phe-Leu-Ala-Pro) dan salah satu derivatnya yaitu (mePhe-Try-Ala-Pro) yang berhasil dimodifikasi dari Teripang (Acaudia Molpadiodes) di Zheijing Cina. Sehingga tetrapeptida tersebut potensial untuk dikembangkan sebagai antioksidan. Isolasi peptida dari alam memerlukan bahan baku dalam jumlah besar sehingga dinilai kurang efisien. Maka pada penelitian ini dilakukan produksi tetrapeptida (mePhe-Try-Ala-Pro) yang lebih efisien dan ramah lingkungan yaitu  dengan metode sintesis fase padat atau (SPPS) dengan strategi Fmoc asam amino menggunakan resin 2-klorotritil klorida dengan bantuan reagen HOBt, HBTU dan DIPEA. Hasil penelitian menunjukan bahwa sintesa berhasil dilakukan dengan berat tetrapeptida yang dihasilkan sebesar 143,7 mg. Namun berdasarkan hasil karakterisasi dengan spektrofotometer massa dan RP-HPLC ditemukan bahwa masih terdapat pengotor sehingga perlu dilakukan pemurnian lebih lanjut. Selanjutnya hasil uji aktivitas antioksidan pada senyawa tetrapeptida menunjukan bahwa senyawa memiliki nilai persen IC50 sebesar 17,677 % menunjukan bahwa aktivitas antioksidan senyawa tersebut lemah.
Kata Kunci: Antioksidan, tetrapeptida, sintesis peptide fase padat
Keywords
Full Text:
PDFReferences
Acun., Sodiyc. 2010, Kromatografi Gas, Jakarta.
Armala, M. M. (2009). Daya Antioksidan Fraksi Air Ekstrak Herba Kenikir (Cosmos caudatus H. B. K.) dan Profil KLT. Skripsi, 39. Yogyakarta: Fakultas Farmasi Universitas Islam Indonesia.
Budimaranti C. (2009). Penyediaan senyawa berkhasiat obat secara sintesisi dengan analasis retrosintesis. Yogyakarta: Jurnal kimia FMIPA Universitas Negeri Yogyakarta.
Chan, W.C.A., White, P.D. (2000). Fmoc Solid Phase Peptide Synthesis: A PracticalApproach. Oxford University press. New York. 2: 11-36, 3: 61-72.
Dachriyanus. (2004). Analisis Struktur Senyawa Organik Secara Spektroskopi. Padang: Lembaga Pengembangan Teknologi Informasi dan Komunikasi (LPTIK) Universitas Andalas.
Dehpour, A.A., Ebrahimzadeh, M.A., Fazel, N.S., and Mohammad, N.S., 2009, Antioxidant Activity of Methanol Extract of Ferula Assafoetida and Its Essential Oil Composition, Grasas Aceites, 60(4), 405-412
Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2–3), 1282–8.
Fessenden dan Fessenden, Kimia Organik Edisi ketiga, Jilid 1, Jakarta: Penerbit Erlangga, 1986.
Hery Winarsi. 2007. Antioksidan Alami dan Radikal Bebas. Yogyakarta: Kanisius. Hal. 189-90Kim, S. K., Ngo, D. H., Vo, T. S. (2012). Marine fish-derived bioactive pep-tides as potential antihypertensive agents. Advances in Food and Nutrition Research, 65, 249–260.
Huang C et,. al. 2005. Identification of an Antifungal Chitinase from a Potential Biocontrol Agent, Bacillus cereus. Journal of Biochemistry and molecular Biology, 38 : 82-88.
Inggrid, M., Santoso, H., Ekstraksi Antioksidan dan Senyawa Aktif dari Buah Kiwi (Actinidia deliciosa), Perjanjian No: III/LPPM/2014-03/10-P, Universitas Katolik Parahyangan, 2014.
Karadeniz, F., Burdurlu, H.S., Koca, N., and Soyer, Y., 2005, Antioxidant Activity of Selected Fruits and Vegetables Grown in Turkey, Turk. J. Agric. For., 29, 297-303.
Khopkar, S,M., Konsep Dasar Kimia Analitik, 1990, 275-286,389-400, UI Press, Jakarta.
Kikuzaki, H. & Nobuji, N. (1993), Antioxidant effect of some ginger constituents, Food Scince, 58, 1407- 1410
Langseth, L., 1995, Oxidant, Antioxidant, and Desease Prevention, International Life Science Institute press, Belgium.
Lestari, Wahyuni Sri, 2014, Validasi Metode Penetapan Kadar Aliskirendalam Plasma darah secara In Vitro Menggunakan Kromatografi Cair Kinerja Tinggi (KCKT). UIN Syarif Hidayatullah: Jakarta.
Leong, L.P., dan Shui, G., 2002, An Investiigation of Antioxidant Capacity of Fruits in Singapore Markets, Food Chemistry. 76:69-75
Lieberman, M., & Peet, A. (2018). Marks' Basic Medical Biochemistry A Clinical Approach 5th Edition. Philadelphia: Wolters Kluwer.
Lorio, E.L. (2007). The Measurement of Oxidative Stress. International Observatory of Oxidative Stress, Free Radicals and Antioxidant Systems. Special supplement to Bulletin 4 (1).
Miriam, Gongora-Benitez., Judit, T. P., Fernando, A. (2013). Handles for Fmoc Solid- Phase Synthesis of Protected Peptides. ACS Combinatorial Science. 15: 217−228.
Molyneux, P. (2004). The Use Of The Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) for Estimating Antioxidant Activity, Songklanakarin J. Sci. Technol, 212-217.
Prakash, A., 2001, Antioxidant Activity, Medallion Laboratories Analytical Progress, vol. 19, No.2.
Predi Mubarok, 2020. Sintesis Tetrapeptida Ser-Pro-Lys-Thr Dengan Metode Solid Phase Peptide Synthesis. Skripsi. FMIPA, Farmasi, Universitas Islam Bandung, Bandung.
Purnomo Suryohandono, 2000. Oksidan, Antioksidan, dan Radikal Bebas. Buku Naskah Lengkap Simposium Pengaruh Radikal Bebas Terhadap Penuaan dalam Rangka Lustrum IX FKUA 7 September 1955-2000.
Sanchez A, Vasquez A. (2017). Bioactive peptides: A review. Food Qual Saf. 1:29-46. Stawikowski, M., and Fields, G.B. (2013), Introduction to Peptide Synthesis, NIH Public Access. National Institutes of Health
Scott, P. J. H.,2009. Linker Strategies in Solid-Phase Organic Synthesis, Wiley&Sons Ltd.Chichester.
Sudarmadji, S; B. Haryono dan Suhardi. (1989). Analisa Bahan Makanan dan Pertanian. Penerbit Liberty. Yogyakarta.
Sugiyono. 2004. Metode Penelitian. Bandung: Alfabeta.
Suharsono,1970. Biokimia. Erlangga, Jakarta. Hlm. 33-45Irwansyah. (2010). Studi Struktur Self-Asembly Peptida Ampifil. Jakarta: Universitas Indonesia.
Khopkar, S.M. (1990). Konsep Dasar Kimia Analitik Jakarta: UI- Press.
Sulistyowati Tuminah. 2000. Radikal bebas dan antioksidan - kaitannya dengan nutrisi dan penyakit kronis. Cermin Dunia Kedokteran no. 128: 49-51.
Wardlaw, G.M., Hampl, J.S., Disilvestro, R.A.(2004). Dietary Fiber. In: Meyers, L.M., ed. Perspectives in Nutrition. 6th ed. New York: McGraw-Hill. 151-158.
Zou TB, He TP, Li HB, Tang HW, Xia EQ. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules.
DOI: http://dx.doi.org/10.29313/.v0i0.29899
  Â