Uji In Silico Aktivitas Antibakteri Peptida terhadap Bakteri E.Coli

Rima Rachmawati Putri, Firda Aulia Jannati, Dhea July Setiawati, Dina Mulyanti, Taufik Muhammad Fakih

Abstract


ABSTRACT: Inappropriate use of antibiotics can cause antibiotic resistance, so the alternative treatment used is to use bioactive peptides. Antimicrobial peptides (AMP) are a group of molecules produced by cells and tissues for the body's defense. Antimicrobial peptides are optimal candidates for alternative treatment of antibiotic resistance. This study aims to compare the activity of bioactive peptide compounds against E.coli bacteria using the in silico method and the interactions of these bioactive peptide compounds involved in the mechanism of antimicrobial action. Modeling into 3D structures using PEP-FOLD the best conformation was selected and then molecular anchoring of E.coli was performed using PathDock software. The interactions formed were identified using the BIOVIA Discovery Studio software. The results obtained are that EQTLK peptide has a good affinity compared to other peptides because it has an ACE score of -36.16 kJ/mol.

Keyword: Antibiotics, Antimicrobial Peptides, E.Coli, Bioactive Peptides, In Silico.

ABSTRAK: Pengunaan antibiotika yang tidak tepat bisa menyebabkan resistensi antibiotika maka alternatif pengobatan yang digunakan yaitu menggunakan peptida bioaktif. Antimicrobial peptides (AMP)  merupakan kelompok molekul yang dihasilkan oleh sel dan jaringan untuk pertahanan tubuh. Peptida antimikroba merupakan kandidat yang optimal untuk alternatif pengobatan resistensi antibiotika. Penelitian ini bertujuan untuk membandingkan aktivitas senyawa peptida bioaktif terhadap bakteri E.coli menggunakan metode in silico dan interaksi senyawa peptida bioaktif tersebut terlibat dalam mekanisme aksi antimikroba. Dilakukan pemodelan ke dalam struktur 3D menggunakan PEP-FOLD konformasi terbaik dipilih lalu dilakukan penambatan molekular terhadap E.coli menggunakan software PathDock. Interaksi yang terbentuk diidentifikasi menggunakan software BIOVIA Discovery Studio. Hasil yang didapat yaitu Peptida EQTLK memiliki afinitas yang baik dibandingkan dengan peptida yang lain karena memiliki ACE score -36,16 kJ/mol.

Kata kunci: Antibiotika, Peptida Antimikroba,  E.coli, Peptida Bioaktif,  In Silico.


Keywords


Antibiotika, Peptida Antimikroba, E.coli, Peptida Bioaktif, In Silico.

Full Text:

PDF

References


Amin, L.Z. (2015). Tatalaksana Diare Akut. Continuing Medical Education, 42(7): 504-508.

Beisswenger, C., & Bals, R. (2005). Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci, 6(3): 255-264.

Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nature Reviews Microbiology, 3 (3): 238- 250.

Capriotti, A. L., Cavaliere, C., Piovesana, S., Samperi, R., & Laganà , A. (2016). Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry, 408(11): 2677-2685.

Coutinho, H. D., Costa, J. G., Lima, E. O., Falcao-Silva, V. S., & Siqueira-Junior, J. P. (2008). Enhancement of the Antibiotic Activity Against a Multiresistant Escherichia coli by Mentha arvensis L. and Chlorpromazine. Chemotherapy, 54 (4): 328-330.

Coutinho, H. D., Costa, J. G., Lima, E. O., FalcaoSilva, V. S., & Siqueira-Junior, J. P. (2009). Herbal Therapy Associated with Antibiotic Therapy: Potentiation of the Antibiotic Activity Against Methicillin–Resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complementary and Alternative Medicine, 9: 13.

Fakih, T. M., & Dewi, M. L. (2020). Identifikasi Mekanisme Molekuler Senyawa Bioaktif Peptida Laut sebagai Kandidat Inhibitor Angiotensin-I Converting Enzyme (ACE). Jurnal Sains Farmasi & Klinis, 7(1): 93-99.

Garo, E., Eldridge, G. R., Goering, M. G., DeLancey, P. E., Hamilton, M. A., Costerton, J. W., & James, G. A. (2007). Asiatic Acid and Corosolic Acid Enhance the Susceptibility of Pseudomonas aeruginosa Biofilms to Tobramycin. Antimicrobial Agents and Chemotherapy, 51(5): 1813-1817.

Gillespie, S.H., & Bamford, K.B. ( 2000). Medical Microbiology and Infection at a Glance. London: Blackwell Science.

Ibrahim, T.A., Opawale, B.O., & Oyinloye, J. M. A. (2011). Antibacterial activity of Herbal Extracts Against Multi Drug Resistent Strains of Bacteria from Clinical Original. Life Sciences Leaflets, 15: 490-498.

Kementrian Kesehetan RI. (2019). Profil Kesehatan Indonesia Tahun 2018. Jakarta: Kemenkes RI.

Kusumaningtyas, E. (2013). Peran peptida susu sebagai antimikroba untuk meningkatkan kesehatan. Wartazoa, 23(2): 63-75.

Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids Research, 37(2): 498-503.

Prabhu, D. S., & Rajeswari, V. D. (2016). In Silico Docking Analysis of Bioactive Compounds from Chinese Medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock. Journal of Chemichal and Pharmaceutical Research, 8(5): 15-21.

Refdanita, Maksum, R., Nurgani, A., & Endang, P. (2004). Pola Kepekaan Kuman Terhadap Antibiotik di ruang intensif Rumah Sakit Fatmawati Jakarta Tahun 2001-2002. Makara Kesehatan, 8(2): 41-48.

Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1): 29-46.

Shen, Y., Maupetit, J., Derreumaux, P. & Tuffery P. (2014). Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. Journal of Chemical Theory and Computation, 10(10); 4745-4758.

Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of Antimicrobial Activity in the Epidermal Mucus Extracts of Fish. Comparative Biochemistry and Physiology, 150 (1): 85-92.

Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2009). Myxinidin, A Novel Antimicrobial Peptide from the Epidermal Mucus of Hagfish, Myxine glutinosa L. Marine Biotechnology, 11 (6): 748-757.

Thevenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P. & Tuffery, P. (2012). PEPFOLD: An Updated De Novo Structure Prediction Server for Both Linear and Disulfide Bonded Cyclic Peptides. Nucleic Acids Research; 40 (1): 288-293.

Tossi, A., Sandri, L., & Giangaspero, A. (2000). Amphipathic, alpha-helical antimicrobial peptides. Biopolymers, 55(1): 4-30.

Veeraragavan, V., Narayanaswamy, R. & Chidambaram, R. (2017). Predicting the Biodegradability Nature of Imidazole and Its Derivatives by Modulating Two Histidine Degradation Enzymes (Urocanase and Formiminoglutamase) Activities. Asian Journal Pharmaceutical and Clinical Research, 10 (11): 383- 386.

Nuraeni Anisa Dwi, Lukmayani Yani, Kodir Reza Abdul. (2021). Uji Aktivitas Antibakteri Propionibacterium acnes Ekstrak Etanol dan Fraksi Daun Karuk (Piper sarmetosum Roxb. Ex. Hunter) serta Analisis KLT Bioautografi. Jurnal Riset Farmasi, 1(1), 9-15.




DOI: http://dx.doi.org/10.29313/.v0i0.29267

Flag Counter