Prosiding Matematika ISSN: 2460-6464

Solusi dan Analisis Sensitivitas Program Linier Menggunakan *Big-M* dan *Solver*

The Solution And The Sensitivity Analysis Of Linear Programming Used Big-M And Solver

¹Melinda Hidayati, ²Yani Ramdani, ³Farid Hirji Badruzzaman ^{1,2,3}Prodi Matematika, Fakultas MIPA, Universitas Islam Bandung, Jl. Tamansari No.1 Bandung 40116

Email: 1 melindahidayati10@gmail.com, 2 yani_ramdani@ymail.com, 3 faridhbadruzzaman@yahoo.com

Abstrack. The allocation problems of limited resources between fisibel solutions that arise can be formed in the linear programming. Linear programming used mathematical model to describe the issue. The sensitivity analysis can be done at the optimal solution to examine the changing influence at the coefficients of the model. The purpose of this research compute the optimal solution problems of linear programming with the purpose to minimize or to maximize can be used Big-M method and solver method. The linear programming problems with the purpose function to maximize to result Z=98,18; X_1 =4,11; and X_3 =1,82. The linear programming problems with the purpose function to minimize to result Z =241,71; $X_1=1,14$; and $X_3=2,43$. The sensitivity analysis used the solver method to maximize to result: 1) The changing at the objective function coefficients for non-base variable can be done $6 \le C_2 < 29,91.$ 2) The changing at the objective function coefficients for base variables can be done $18 \le C_1 \le 20$ and $9 \le C_3 \le 10$ 10. 3) The Changing at the right-hand side of constraints, can be done $10 < b_2 < 120$ and $2.5 < b_3 \le$ 12,78. No binding constraints, can be done $18,18 \le b_1 \le 24$. The sensitivity analysis used the solver method to minimize to result: 1) The changing a the objective function coefficients for non-base variables can be done $54,29 < C_2 \le 72$. 2) The changing at the objective function coefficients for base variables can be done $46.8 < C_1 \le 135$ and $37.33 < C_3 \le 71.27$. 3) The changing at the right-hand side constraints, binding constraints can be done $120 < b_1 \le 225$ and $174 \le b_2 < 300$. Not binding constraints, can be done $150 \le b_3 \le 157,14$.

keywords: linear programming, technic big-m, solver, sensitivity analysis

Abstrak. Persoalan alokasi sumber daya terbatas diantara solusi fisibel yang muncul dapat diselesaikan dengan program linier. Program linier menggunakan model matematis untuk menggambarkan persoalan tersebut. Dari solusi optimal dapat dilakukan analisis sensitivitas untuk meneliti pengaruh bila terjadi perubahan pada koefisien model tersebut. Tujuan penulisan adalah menghitung solusi optimal persoalan program linier dengan tujuan memaksimumkan dan meminimukan menggunakan teknik Big-M dan solver serta menganalisis sensitivitas solusi optimal jika dilakukan perubahan pada koefisien-koefisiennya. Persoalan dengan fungsi tujuan memaksimumkan menghasilkan Z=98,18; $X_1=4,09$; dan $X_3=1,82$. Persoalan dengan fungsi tujuan meminimumkan Z=241,71; X_1 =1,14; dan X_3 =2,43. Analisis sensitivitas menggunakan solver untuk memaksimumkan menghasilkan: 1) Perubahan koefisien fungsi tujuan untuk variabel nonbasis dapat dilakukan $6 \le C_2 < 29,91$. 2) Perubahan koefisien fungsi tujuan untuk variabel basis dapat dilakukan $18 \le C_1 \le 20$ dan $9 \le C_3 \le 10$. 3) Perubahan pada ruas kanan suatu pembatas, binding constraints dapat dilakukan $10 < b_2 < 120$ dan $2,5 < b_3 \le 12,78$. Not binding constraints, dapat dilakukan $18,18 \le b_1 \le 24$. Analisis sensitivitas dengan menggunakan solver untuk meminimumkan menghasilkan: 1) Perubahan koefisien fungsi tujuan untuk variabel nonbasis dapat dilakukan 54,29 < $C_2 \le 72.$ 2) Perubahan koefisien fungsi tujuan untuk variabel basis dapat dilakukan 46,8 $< C_1 \le 135$ dan $37,33 < C_3 \le 71,27$. 3) Perubahan pada ruas kanan pembatas, binding constraints dapat dilakukan $120 < b_1 \le 225$ dan $174 \le b_2 < 300$. Not binding constraints, dapat dilakukan $150 \le b_3 \le 157,14$.

kata kunci : program linier, teknik big-m, solver, analisis sensitivitas

Pendahuluan A.

Program linier menggunakan model matematis untuk menggambarkan persoalan dengan alokasi sumber daya terbatas. Bentuk baku model program linear terdiri dari fungsi tujuan, fungsi pembatas, dan pembatas tanda. Fungsi tujuan berupa memaksimumkan atau meminimumkan dengan bentuk $Z = \sum_{j=1}^{n} c_{j}x$. Fungsi pembatas berbentuk persamaan atau pertidaksamaan linear yang dibatasi sumber daya $a_{i1}x_1$ + $a_{i2}x_2 + \cdots + a_{in}x_n \stackrel{\leq}{=} b_i$ dan pembatas tanda selalu bernilai nonnegatif yaitu $Xj \ge 0$. Model program linier memiliki koefisien-koefisien (a_{ij}, b_i, c_j) . c_i merupakan kenaikan dalam Z akibat kenaikan setiap unit dalam x_j (kegiatan j), b_i merupakan jumlah sumber daya yang tersedia untuk dialokasikan dalam kegiatan, dan a_{ij} merupakan jumlah sumber daya i yang digunakan oleh setiap unit kegiatan j. Untuk menentukan solusi program linier memiliki beberapa cara yang dapat digunakan yaitu metode grafik, metode simpleks, Big-M, dua fase dan solver. Berdasarkan solusi optimal persoalan program linier dapat dilakukan analisis sensitivitas untuk meneliti pengaruh bila terjadi perubahan pada koefisien model program linier.

В. Landasan Teori

Program linier menurut Dimyati (1992) adalah perencanaan aktivitas-aktivitas untuk memperoleh suatu hasil yang optimum, yaitu suatu hasil yang mencapai tujuan terbaik di antara seluruh alternatif yang fisibel. Model matematis program linear adalah sebagai berikut:

Fungsi Tujuan:

Maksimumkan/minimumkan
$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n = \sum_{j=1}^{n} c_j x_j$$

Fungsi pembatas:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$$

Pembatas tanda $x_i \ge 0$

Di mana,

: variabel keputusan ke-j

: koefisien fungsi tujuan ke-j

: kapasitas kendala ke-i

: koefisien fungsi kendala ke-i

untuk variabel keputusan ke-j

i:1,2,...,m

i:1,2,...,n

Adakalanya pembatas dari suatu model program linier merupakan kombinasi dari ≤/≥/=. Fungsi pembatas menggunakan pertidaksamaan dengan tanda " \geq ", " \leq " atau "=" dapat diselesaikan dengan teknik *Big-M* atau teknik dua fase.

Menurut Arifin (2007) solver merupakan salah satu perangkat tambahan (addins) yang digunakan untuk memecakan kasus yang rumit yang terdapat dalam program aplikasi Microsoft office.

Harmon (2011) menyatakan dalam solver ada tiga metode yang digunakan :

- 1. Evolutionary method: Evolutionary akan digunakan jika melibatkan fungsi diskontinu.
- 2. Generalized Reduced Gradient nonlinear (GRG nonlinier) method: GRG nonlinier akan digunakan jika melibatkan variabel keputusan atau pembatas merupakan fungsi nonlinier dan kontinu.
- 3. Simplex linear programming (simplex LP) method: Simplex LP akan digunakan jika melibatkan semua variabel keputusan atau pembatas merupakan fungsi linear.

Analisis sensitivitas menjelaskan sampai sejauh mana koefisien-koefisien model program linear dapat berubah tanpa merubah solusi optimal. Perubahan koefisien pada program linear dapat dilakukan pada fungsi tujuan untuk variabel nonbasis dan variabel basis, pada ruas kanan suatu pembatas, dan pada kolom untuk suatu variabel nonbasis. Selain melakukan perubahan pada koefisien model program linear, dapat juga dilakukan penambahan suatu variabel atau aktifitas baru dan pembatas baru. Tetapi hanya akan dilakukan perubahan pada fungsi tujuan untuk variabel nonbasis, variabel basis, dan pada ruas kanan suatu pembatas dengan menggunakan *solver*.

C. Pembahasan

Solusi Persoalan Program Linier dengan Tujuan Memaksimumkan

Sebuah perusahaan membuat 3 jenis produk yaitu A, B dan C. Perusahaan memikirkan berapa banyak produksi setiap unit agar perusahaan memperoleh profit yang maksimum. Dengan tenaga kerja paling banyak 24 orang dalam pembuatan setiap produk. Harapan perusahaan dapat menghasilkan paling sedikit 30 unit setiap kali produksi, dan dana untuk upah harus sama dengan \$10.

Tabel 1. Data persoalan perusahaan

	A	В	С					
Tenaga kerja	4	3	1					
Produksi	2	4	12					
Upah (\$/unit)	2	3	1					
Harga Jual (\$/unit)	20	6	9					

Dari data diatas maka perusahaan mengharapkan untuk dapat memaksimumkan profit setiap kali produksi. Untuk dapat menyelesaikan persoalan dengan tujuan memaksimumkan program linier diatas maka terlebih dahulu membuat formulasi program linier dalam bentuk baku, sebagai berikut :

Diketahui :
$$x_1 = \text{Produk A}$$

 $x_2 = \text{Produk B}$
 $x_3 = \text{Produk C}$
Memaksimumkan $Z = 20x_1 + 6x_2 + 9x_3$
Pembatas $4x_1 + 3x_2 + x_3 \leq 24$
 $2x_1 + 4x_2 + 12x_3 \geq 30$

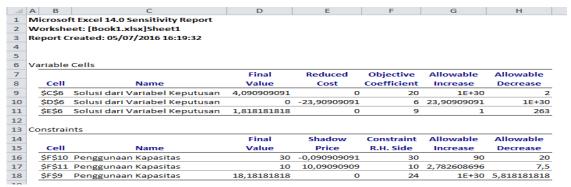
$$2x_1 + 3x_2 + x_3 = 10$$

Pembatas Tanda

 $x_1, x_2, x_3 \ge 0$

Persoalan ini diselesaiakan dengan dua cara, yaitu teknik Big-M dan solver selanjutnya dilakukan analisis sensitivitas pada persoalan dengan tujuan memaksimumkan.

Tabel 2. Solusi dari Big-M Persoalan dengan Tujuan Memaksimumkan


Iterasi	BV	Z	x_1	x_2	x_3	S_1	S_2	R_1	R_2	Solusi	Rasio
	Z	1	-20-4M	- 6-7M	-9-13M	0	M	0	0	-40M	
	S_1	0	4	3	1	1	0	0	0	24	24
Awal	R_1	0	2	4	12	0	-1	1	0	30	2,5
	R ₂	0	2	3	1	0	0	0	1	10	10
	Z	1	0	263 11	0	0	$\frac{1}{11}$	$-\frac{1}{11}+M$	$\frac{111}{11} + M$	1080 11	
Akhir	<i>S</i> ₁	0	0	$-\frac{32}{11}$	0	1	$-\frac{1}{11}$	$\frac{1}{11}$	$-\frac{23}{11}$	64 11	
	<i>x</i> ₃	0	0	$\frac{1}{11}$	1	0	$-\frac{1}{11}$	1/11	$-\frac{1}{11}$	20 11	
	<i>x</i> ₁	0	1	16 11	0	0	$\frac{1}{22}$	$-\frac{1}{22}$	6 11	45 11	

Berdasarkan perhitungan dengan menggunakan teknik *Big-M* maka didapatkan solusi optimal : Z= $\frac{1080}{11}$ =98,18; $x_1=\frac{45}{11}$ =4,09; $x_3=\frac{20}{11}$ =1,82; dan $S_1=\frac{64}{11}$ =5,82.

4	Α	В	С	D	Е	F	G	Н
1								
2								
3								
4			x_1	x_2	<i>x</i> ₃			
5		Koefisien Fungsi Tujuan	20	6	9			
6		Solusi dari Variabel Keputusan	4,090909091	0	1,81818182			
7								
8		Pembatas				Penggunaan Kapasitas		Kapasitas Tersedia
9			4	3	1	18,18181818	≤	24
10			2	4	12	30	2	30
11			2	3	1	10	=	10
12						The state of the s		
		Solusi Optimal	98,18181818					
13		Solusi Optimai	30,10101010					

Gambar 1. Solusi dari solver Persoalan dengan Tujuan Memaksimumkan

Berdasarkan perhitungan dengan menggunakan solver maka didapatkan solusi optimal: Z=98,18; S_1 =5,82; x_3 =1,82; dan x_1 =4,09.

Gambar 2. Analisis Sensitivitas Persoalan dengan Tujuan Memaksimumkan

Analisis sensitivitas dengan menggunakan solver pada persoalan dengan fungsi tujuan memaksimumkan menghasilkan:

- 1. Perubahan koefisien fungsi tujuan untuk variabel nonbasis, variabel keputusan untuk persoalan dengan fungsi tujuan memaksimumkan adalah x_2 . Perubahan dapat dilakukan pada $6 \le c_2 < 29,91$.
- 2. Perubahan koefisien fungsi tujuan untuk variabel basis, variabel keputusan basis untuk persoalan dengan fungsi tujuan memaksimumkan adalah x_1 dan x_3 . Perubahan dapat dilakukan pada $18 \le c_1 \le 20$ dan dapat dilakukan pada $9 \le c_3 \le 10.$
- 3. Perubahan pada ruas kanan suatu pembatas, binding constraints untuk persoalan dengan fungsi tujuan memaksimumkan adalah \$H\$10 dan \$H\$11. Perubahan dapat dilakukan pada $10 < b_2 < 120$ dan dapat dilakukan pada $2.5 < b_3 \le$ 12,78. Not binding constraints adalah \$H\$9, perubahan dapat dilakukan pada 18,18 $\leq b_1 \leq$ 24.

Solusi Persoalan Program Linier dengan Tujuan Meminimumkan

Seorang petani beternak kambing untuk dijual, dan ia ingin menentukan jumlah berbagai jenis pakan yang harus diberikan kepada setiap kambing untuk memenuhi persyaratan gizi dengan biaya minimum. Jumlah unit untuk setiap jenis pakan disajikan dalam tabel 3, bersama dengan kebutuhannya per hari dan biayanya.

Unsur gizi pokok	Kilogram Jagung	Kilogram Taukage	Kilogram Alfafa	Minuman Kebutuhan per hari
Karbohidrat	90	20	40	200
Protein	30	80	60	180
Vitamin	10	20	60	150
Biaya	84	72	60	

Tabel 3. Data pakan kambing

Dari data diatas maka petani mengharapkan untuk dapat meminimumkan biaya dengan gizi yang cukup untuk kambing ternaknya.

Untuk dapat menyelesaikan persoalan diatas, maka terlebih dahulu membuat formulasi program linier dalam bentuk baku, sebagai berikut:

Diketahui : x_1 = Kilogram Jagung

 $x_2 = \text{Kilogram Taukage}$

 $x_3 = \text{Kilogram Alfafa}$

Meminimumkan $Z = 84x_1 + 72x_2 + 60x_3$ Pembatas $90x_1 + 20x_2 + 40x_3 \ge 200$ $30x_1 + 80x_2 + 60x_3 \ge 180$ $10x_1 + 20x_2 + 60x_3 \ge 150$

Pembatas Tanda $x_1, x_2, x_3 \ge 0$

Persoalan ini diselesaiakan dengan dua cara, yaitu teknik *Big-M* dan *solver* selanjutnya dilakukan analisis sensitivitas pada persoalan dengan Tujuan Meminimumkan.

Tabel 4. Solusi dari Big-M Persoalan dengan Tujuan Meminimumkan

Berdasarkan perhitungan dengan menggunakan teknik *Big-M* maka didapatkan solusi optimal : $Z = \frac{1692}{7} = 241,71$; $x_1 = \frac{8}{7} = 1,14$; $x_3 = \frac{17}{7} = 2,43$; dan $S_3 = \frac{50}{7} = 7,14$.

Iterasi	BV	Z	<i>x</i> ₁	x_2	x_3	S_1	S_2	S_3	R_1	R ₂	R ₃	Solusi	Rasio
	Z	1	-84 + 130 <i>M</i>	-72 + 120 <i>M</i>	-60 + 160 <i>M</i>	-M	-M	-M	0	0	0	530M	
Awal	R ₁	0	90	20	40	-1	0	0	1	0	0	200	5
7 Wai	R ₂	0	30	80	60	0	-1	0	0	1	0	180	3
	R ₃	0	10	20	60	0	0	-1	0	0	1	150	5 2
	Z	1	0	$-\frac{124}{7}$	0	$-\frac{27}{35}$	$-\frac{17}{35}$	0	$\frac{27}{35}$ -M	$\frac{17}{35} - M$	-М	1692 7	
Akhir	x ₁	0	1	$-\frac{10}{21}$	0	$-\frac{1}{70}$	1 105	0	1 70	$-\frac{1}{105}$	0	<u>8</u> 7	
AKIIII	S ₃	0	0	1460 21	0	$\frac{2}{7}$	$-\frac{25}{21}$	1	$\frac{2}{7}$	$-\frac{25}{21}$	-1	<u>50</u> 7	
	<i>x</i> ₃	0	0	11 7	1	1/140	$-\frac{3}{140}$	0	$-\frac{1}{140}$	$\frac{3}{140}$	0	1 7 7	

- 4	Α	В	C	D	E	Е	G	Н	
4	А	D	C	U		F	G	п	
1									
2				x_1	x 2	<i>x</i> ₃			
3			Koefisien Fungsi Tujuan	84	72	60			
4			Solusi dari Variabel Keputusan	1,142857143	0	2,428571429			
5									
6			Pembatas				Penggunaan Kapasitas		Kapasitas Tersedia
7			Pembatas	90	20	40	Penggunaan Kapasitas 200	≥	Kapasitas Tersedia 200
			Pembatas	90 30	20 80	40 60		2	<u> </u>
7			Pembatas				200		200
7			Pembatas	30	80	60	200 180	2	200 180
7 8 9			Pembatas Solusi Optimal	30	80	60	200 180	2	200 180

Gambar 3. Solusi dari solver Persoalan dengan Tujuan Meminimumkan

Berdasarkan perhitungan dengan menggunakan *solver* maka didapatkan solusi optimal : Z=241,71; $x_1=1,14$; dan $x_3=2,43$.

	A B	С	D	E	F	G	Н
1	Microso	ft Excel 14.0 Sensitivity Report					
2	Worksh	eet: [Book1.xlsx]Sheet2					
3	Report (created: 06/07/2016 22:56:36					
4							
5							
6	Variable	Cells					
7			Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	\$D\$4	Solusi dari Variabel Keputusan	1,142857143	0	84	51	37,2
10	\$E\$4	Solusi dari Variabel Keputusan	0	17,71428571	72	1E+30	17,71428571
11	\$F\$4	Solusi dari Variabel Keputusan	2,428571429	0	60	11,27272727	22,66666667
12							
13	Constrai	ints					
14			Final	Shadow	Constraint	Allowable	Allowable
15	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
16	\$G\$7	Penggunaan Kapasitas	200	0,771428571	200	25	80
17	\$G\$8	Penggunaan Kapasitas	180	0,485714286	180	120	6
18	\$G\$9	Penggunaan Kapasitas	157,1428571	0	150	7,142857143	1E+30
10							

Gambar 4. Analisis Sensitivitas Persoalan dengan Tujuan Meminimumkan

Analisis sensitivitas dengan menggunakan solver pada persoalan dengan fungsi tujuan meminimumkan menghasilkan:

- 1. Perubahan koefisien fungsi tujuan untuk variabel nonbasis, variabel keputusan untuk persoalan dengan fungsi tujuan meminimumkan adalah X_2 . Perubahan dapat dilakukan pada 54,29 $< C_2 \le 72$.
- 2. Perubahan koefisien fungsi tujuan untuk variabel basis, variabel keputusan basis untuk persoalan dengan fungsi tujuan meminimumkan adalah X_1 dan X_3 . Perubahan dapat dilakukan pada 46,8 < $C_1 \le 135$ dan dapat dilakukan pada $37,33 < C_3 \le 71,27.$
- 3. Perubahan pada ruas kanan suatu pembatas, binding constraints untuk persoalan dengan fungsi tujuan meminimumkan adalah \$I\$7 dan \$I\$8. Perubahan dapat dilakukan pada $120 < b_1 \le 225$ dan dapat dilakukan pada $174 \le b_2 < 300$. *Not binding constraints* adalah \$I\$9, dapat dilakukan pada $150 \le b_3 \le 157,14$.

D. Kesimpulan

Berdasarkan perhitungan pada persoalan dengan fungsi tujuan memaksimumkan dengan penyelesaian menggunakan teknik *Big-M* dan *solver* $Z=\frac{1080}{11}=98,18; x_1=\frac{45}{11}=4,09; x_3=\frac{20}{11}=1,82; dan S_1=\frac{64}{11}=5,82.$

Berdasarkan perhitungan pada persoalan dengan fungsi tujuan meminimumkan dengan penyelesaian menggunakan teknik *Big-M* dan *solver* menghasilkan $Z = \frac{1692}{7} =$ 241,71; $x_1 = \frac{8}{7} = 1,14$; $x_3 = \frac{17}{7} = 2,43$; dan $S_3 = \frac{50}{7} = 7,14$.

Analisis sensitivitas dengan menggunakan solver pada persoalan dengan fungsi tujuan memaksimumkan menghasilkan: 1) Perubahan koefisien fungsi tujuan untuk variabel nonbasis diperbolehkan pada C_2 adalah $6 \le C_2 < 29,91$. 2) Perubahan koefisien fungsi tujuan untuk variabel basis, diperbolehkan pada C_1 adalah $18 \le C_1 \le$ 20 dan diperbolehkan pada C_3 adalah $9 \le C_3 \le 10.3$) Perubahan pada ruas kanan suatu pembatas. Pembatas binding constraints, diperbolehkan pada b_2 adalah $10 < b_2 < 120$ dan diperbolehkan pada b_3 adalah $2.5 < b_3 \le 12.78$. Not binding constraints diperbolehkan pada b_1 adalah $18,18 \le b_1 \le 24$.

Analisis sensitivitas dengan menggunakan solver pada persoalan dengan fungsi tujuan meminimumkan menghasilkan: 1) Perubahan koefisien fungsi tujuan untuk variabel nonbasis diperbolehkan pada C_2 adalah $54,29 < C_2 \le 72$. 2) Perubahan koefisien fungsi tujuan untuk variabel basis, diperbolehkan pada C_1 adalah 46,8 < $C_1 \le$ 135 dan diperbolehkan pada C_3 adalah 37,33 < $C_3 \le 71,27$. 3) Perubahan pada ruas kanan suatu pembatas. Binding constraints, diperbolehkan pada b_1 adalah $120 < b_1 \le$

225 dan diperbolehkan pada b_2 adalah $174 \le b_2 < 300$. Not binding constraints, diperbolehkan pada b_3 adalah $150 \le b_3 \le 157,14$.

Daftar Pustaka

- Arifin, J. 2007. Aplikasi Excel dalam Solver Bisnis Terapan. Jakarta. Elex Media Komputindo.
- Dimyati, T. T. dan. A. Dimyati. 1992. Operations Research: Model-model Pengambilan Keputusan. Bandung. Sinar Baru Algensindo.
- Harmon, M. 2011. Step by Step Optimization with Excel Solver. (Online). (http://excelmasterseries.com/D-_Loads/New_Manuals/Step-By-Step Optimization S.pdf . Diakses 23 Mei 2016).
- Hiller, F.S. dan G.J. Lieberman. 1990. Pengantar Riset Operasi. Edisi Kelima Jilid 1. Diterjemahkan oleh: Gunawan, Ellen dan A.W. Mulia. Erlangga. Jakarta.
- Siswanto. 2007. Operations Research Jilid 1. Jakarta. Erlangga.