Studi Interaksi Antibodi Monoklonal ZV-2 dan ZV-48 terhadap Protein E (DIII) Virus Zika secara In Silico

Ariza Priawan Hidayah, Amir Musaddad Miftah, Taufik Muhammad Faqih

Abstract


Abstract. Using monoclonal antibodies as a therapy for a disease is one of the strategies developed in the world of health, because monoclonal antibodies are very specific to a particular molecule or pathogen and can bind it with good affinity. In a previous study by Haiyan Zhao et al., (2016) monoclonal antibodies as a candidate for inhibiting zika virus have been found, namely ZV-2 and ZV-48. The purpose of this study is to compare which is better between ZV-2 and ZV-48 based  antibody-antigen docking methods. In this research, identification of interactions between ZV-2 and ZV-48 antibodies against E protein (DIII) of zika virus using PatchDock algorithm and further observed using Biovia Discovery Studio 2019 software. Based on the results of docking, ZV-2 and ZV-48 antibodies have binding affinity with the E protein (DIII) of 5KVD and 5KVE, the best results are shown ZV-2 antibodies  with ACE scores -154.86 kj/mol and -115.85 kj/mol, respectively. While ZV-48 antibodies had ACE scores of -110.38 kj/mol and 69.83 kj/mol, respectively. Thus, ZV-2 antibodies are predicted to be a good candidate potential for  inhibit the E protein (DIII) of  zika virus.

Keywords: Monoklonal antibodies, in silico, antibodi-antigen docking, E protein, zika virus.

Abstrak. Menggunakan antibodi monoklonal sebagai terapi suatu penyakit merupakan salah satu strategi yang dikembangkan dalam dunia kesehatan, karena antibodi monoklonal bersifat sangat spesifik terhadap suatu molekul atau patogen tertentu dan dapat mengikatnya dengan afinitas yang baik.  Pada penelitian sebelumnya yang dilakukan Haiyan Zhao et al., (2016) telah berhasil ditemukan antibodi monoklonal sebagai kandidat penghambat virus zika yaitu ZV-2 dan ZV-48. Tujuan dari penelitian ini yaitu dapat membandingkan mana yang lebih baik antara ZV-2 dan ZV-48  berdasarkan penambatan molekuler berbasis antibodi-antigen.  Dalam penelitian ini dilakukan identifikasi terhadap interaksi yang terjadi antara antibodi ZV-2 dan ZV-48 terhadap protein E (DIII) virus zika menggunakan algoritma PatchDock dan diamati lebih lanjut menggunakan software Biovia Discovery Studio 2019. Berdasarkan hasil penambatan molekuler, kedua antibodi (ZV-2 dan ZV-48) memiliki afinitas  pengikatan terhadap protein E (DIII) 5KVD dan 5KVE, hasil paling baik ditunjukan antibodi ZV-2 dengan ACE score masing-masing -154,86 kj/mol dan -115,85 kj/mol, sementara antibodi ZV-48 memiliki ACE score masing-masing -110,38 kj/mol dan 69,83 kj/mol. Dengan demikian, antibodi ZV-2 diprediksi memiliki potensi hambatan yang lebih baik terhadap protein E (DIII) virus zika.

Kata Kunci: Antibodi monoklonal, in silico, penambatan molekuler berbasis antibodi-antigen, protein E, virus zika.


Keywords


Antibodi monoklonal, in silico, penambatan molekuler berbasis antibodi-antigen, protein E, virus zika

Full Text:

PDF

References


Abbas, A.K., Lichtman, A.H., and Pillai, S. (2015). Basic Imunology: Function and Disorders of the Immune System, (5th Edition), Elsevier, Philladelphia.

Agumadu, V.C., and Ramphul, K. (2018). ‘Zika Virus: A Review of Literature’, Cureus, Vol. 10, No. 7: 1-5.

Apriliana, Ety dan Zahra, Aminah. (2017). Peningkatan Risiko Mikrosefali akibat Infeksi Virus Zika pada Kehamilan, Majority, Vol. 6, No. 2: 110-114.

Barzon, L., Trevisan, M., Sinigaglia, A., Lavezzo, E. and Palù, G. (2016). ‘Zika virus: From pathogenesis to disease control’, FEMS Microbiol Lett, Vol. 363, No. 18: 1–17.

Dias, Raquel and Walter, F.A.J. (2008). ‘Molecular Docking Alogarithms’, Current Drug Targets, Vol. 9: 1040-1047.

Faqih, Taufik Muhamad dan Dewi, Mentari Lutfika. (2020). ‘Identifikasi Mekanisme Molekuler Senyawa Bioaktif Peptida Laut sebagai Kandidat Inhibitor Angiotensin-I Converting Enzyme (ACE)’, Jurnal Sains Farmasi & Klinis, Vol. 7, No. 1: 76-82

Geldenhuys, W,J., Gaasch, Kevin E., Watson, M., Allen, David D., and Van der Schyf, Cornelis J. (2006). ‘Optimizing the use of open-source software applications in drug discovery’, DDT, Vol. 11, No. (3/4): 127-132.

Kementerian Kesehatan RI. (2016). Pedoman Pencegahan dan Pengendalian Virus Zika, Kementerian Kesehatan RI, Jakarta.

Kemmish, H., Fasnacht, M., and Lisa, Y. (2017).’ Fully automated antibody structure prediction using BIOVIA tools: Validation study’, Plos One, Vol. 12, No. 5:1-26.

Krisna, Luh Ade Wilan. (2016). ‘Zika Outbreak: What You Need to Know’, Meditory, Vol. 4, No. 2: 134-144.

Naumenko1, A.M., Nyporko1, A.Y., Tsymbalyuk, O.V., Nuryshchenko, N.Y., Voiteshenko, I.S., and Davidovska1, T.L. (2016). ‘Molecular Docking Of Nanosized Titanium Dioxide Material To The Extracelular Part Of GABAB-Receptor’, Studia Biologica, Vol. 10, No.. 3: 5-16.

Rawal, G., Yadav, S., and Kumar, R. (2016). ‘Zika virus: An overview’, Journal of Family Medicine and Primary Care, Vol. 5, No. 3: 523-527.

Ruswanto, Wulandari, W.T., Rahayu, S.S., Mardaningrum, R., dan Hidayati, N.D. (2019). ‘Studi In Silico dan Bioaktivitas Senyawa Turunan N’-Benzoylisonicotinohydrazide (4-methyl, 4-chloro dan 3,5-dinitro) Pada Mycobacterium Tuberculosis (H37RV) Bakteri Gram Positif Serta Bakteri Gram Negatif’, Pharmacoscript, Vol. 2, No. 1: 37-48.

Sirohi, D., and Khun, R.J. (2017). ‘Zika Virus Structure, Maturation, and Receptors’, The Journal of Infectious Diseases, Vol. 216, No. 10: 935-944.

Widodo, H.S., Murti, T.W., Agus, A., dan Widodo. (2018). ‘Mengidentifikasi Peptida Bioaktif Angiotensin Converting Enzymeinhibitor (ACEi) dari Kasein β Susu Kambing dengan Polimorfismenya Melalui Teknik In Silico’, Jurnal Aplikasi Teknologi Pangan, Vol. 7, No. 4: 180-185.

World Health Organization. (2018). Zika Virus, https://www.who.int/news-room/fact-sheets/detail/zika-virus, diakses pada 17 Januari 2019.

Yuningsih, Rahmi. (2016). ‘Mewaspadai Ancaman Virus Zika di Indonesia’, Pusat Penelitian Badan Keahlian DPR RI, Vol. 8, No. 3: 9-12.

Zhao, Haiyan, Fernandez, E., Dowd, K.A., Pierson, T.C., Diamond, M.S. and Fremont, D.H. (2016). ‘Structural Basis of Zika Virus-Specific Antibody Protection’, Cell, Vol. 166: 1-12.




DOI: http://dx.doi.org/10.29313/.v6i2.23167

Flag Counter    Â