Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern (Kasus Data Transaksi Penjualan PT.X di Kota Malang Tahun 2017)

Yuyun Nisrina, Anneke Iswani Achmad

Abstract


Abstract. Data mining is a technique to process data from a large database to obtain information that will help in decision making. One method on data mining is Market Basket Analysis which is used to analyse the patterns of consumer spending behavior to find associations between products in the transaction data. This paper will discuss the Market Basket Analysis using the Generalized Sequential Pattern (GSP) algorithm on the sales transaction data of PT. X in Malang city to find sequential pattern or sequence by involving transaction time measured through support value to show how big the level of dominance of an item of the whole transaction. From the sales transaction data of PT. X in the city of Malang in 2017, the transaction is conducted by as many as 58 consumers consisting of 68 types of products. Result of the data, obtained frequent 3-sequence of extra food (will 1 & 2) and Etta Goat milk (Will 1 & 2) purchased simultaneously at one time transaction, then the next transaction bought Etta Goat milk (Will 1 & 2) with the value of support of 20.69%.

Keywords: Market Basket Analysis, Data Mining, Generalized Sequential Pattern, Support.

Abstrak. Data mining adalah suatu teknik mengolah data dari database yang besar untuk memperoleh suatu informasi yang akan membantu dalam pengambilan keputusan. Salah satu metode pada data mining yaitu Market Basket Analysis yang digunakan untuk menganalisis pola perilaku belanja konsumen untuk menemukan asosiasi antar produk dalam data transaksi. Makalah ini akan membahas Market Basket Analysis menggunakan algoritma Generalized Sequential Pattern (GSP) pada data transaksi penjualan PT.X di Kota Malang untuk menemukan pola sekuensial atau urutan dengan melibatkan waktu transaksi yang diukur melalui nilai support untuk menunjukkan seberapa besar tingkat dominasi suatu item dari keseluruhan transaksi. Dari data transaksi penjualan PT.X di Kota Malang tahun 2017, transaksi dilakukan oleh sebanyak 58 konsumen yang terdiri dari 68 jenis produk. Hasil dari data tersebut, diperoleh  frequent 3-sequence yaitu extra food (will 1 & 2) dan etta goat milk (will 1 & 2) yang dibeli secara bersamaan dalam satu waktu transaksi, kemudian transaksi selanjutnya membeli etta goat milk (will 1 & 2) dengan nilai support sebesar 20.69%.

Kata Kunci: Market Basket Analysis, Data Mining, Generalized Sequential Pattern, Support.

 


Keywords


Market Basket Analysis, Data Mining, Generalized Sequential Pattern, Support.

Full Text:

PDF

References


Ahola, Jussi. (2001). Mining Sequential Patterns. Finland: VTT Information Technology.

Annie, M. C., L. C., dan Kumar, D., A. (2012). Market Basket Analysis for a Supermarket Based on Frequent Itemset Mining. International Journal of Computer Science Issues, 257-264.

Han, J., dan Kamber, M. (2006). Data Mining: Concept amd Techniques. Waltham: Morgan Kaufmann Publishers.

Han, J., Kamber, M., dan Pei, J. (2012). Data Mining: Concept amd Techniques, Third Edition. Waltham: Morgan Kaufmann Publishers.

Hand, David, Mannila, Heikki, dan Smyth, Padhraic (2001). Priciples of Data Mining. The MIT Press.

Larose, Daniel T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Canada: John Willey and Sons. Inc.

Olson, D., dan Shi, Y. (2008). Pengantar Ilmu Penggalian Data Bisnis. Salemba Empat, Jakarta.

Srikant, Ramakrishnan. (1996). Fast Algorithm for Mining Association Rules and Sequential Patterns. Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Wisconsin – Madison.

Zaki, Mohammed J. (1997). Fast Mining of Sequential Patterns in Very Large Databases. The University of Rochester Computer Science Departement Rochester, New York 14627. Technical Report 668.




Flag Counter