Kestabilan Lereng Optimal Tambang Batubara Highwall dan Lowwall disertai Probabilitas Kelongsorannya PT. XYZ di Kecamatan Lahei Kabupaten Barito Utara Provinsi Kalimantan Tengah

Arswinda Radita, Febri Hirnawan, Noor Fauzi

Abstract


Abstract. Slope stability is an important issue in the planning and operation of open mines. The design of a stable and precise slope geometry will have a large impact on the economy and the continuity of mine operation to maximize production. To find out the design of a stable slope, slope stability analyses are needed to get the number of safety factors from a particular slope shape. This company will open a new pit, so slope stability analyses along with probability of landslides resulting in optimal slope design is required. The study was conducted with the aim to identify the sequence of stratigraphic positions and physical-mechanical properties of rocks at the study site by rotary drilling, and to determine the stability of slope geometry of pits being based on design recommendations  of highwall and lowwall overall pit slopes of optimal safety factors and lowest values of failure probabilities. In analyzing the stability of slopes required data from laboratory testing results, including data on physical and mechanical properties of rocks. These data are then tested for normality in order to match the variables using the Kolmogorov-Smirnov method using SPSS 26.0 Statistics Software. Slope stability analysis is performed using the Bishop boundary equilibrium method accompanied by probabilistic analysis using the Monte Carlo and Latin-Hypercube method using Slide 6.0 Software. Based on the results of the study, it can be seen that the constituent rocks at the study site consist of sandstone, claystone, siltstone and coal. Classification of rock strength is classified as very soft. Single safe slope geometries are H = 15 m and θ = 620 for sandstone, H = 10 m and θ = 600 for claystone, H = 8 m and θ = 600 for siltstone and H = 12 m and θ = 600 for coal. While the slope design recommendations for highwall A are H = 95.79 m and θ = 480, highwall B is H = 90.61 m and θ = 350, highwall C is H = 95.00 m and θ = 280 and highwall D is H = 78.30 m and θ = 480 and for lowwall A is H = 105.64 m and θ = 240, lowwall B is H = 94.00 m and θ = 220, lowwall C is H = 113.66 m and θ = 180 and lowwall D is H = 77.00 m and θ = 400.

Keywords: Slope Stability, Highwall, Lowwall, Factor of Safety, Failure Probability

Abstrak. Kestabilan lereng merupakan faktor penting dalam perencanaan dan operasional tambang terbuka. Desain dari lereng yang stabil dan tepat akan mempunyai dampak yang besar terhadap keekonomian serta kontinuitas produksi tambang. Untuk mengetahui desain lereng yang stabil tersebut maka diperlukan analisis kestabilan lereng. Perusahaan tempat penelitian akan membuka pit baru sehingga diperlukan analisis kestabilan lereng disertai probabilitas kelongsoran  untuk memperolah desain lereng yang optimal. Penelitian dilakukan dengan tujuan untuk mengetahui stratigrafi dan karakteristik batuan pada lokasi penelitian, mengetahui geometri lereng optimal pada lokasi penelitian serta menentukan rekomendasi desain pada lereng untuk highwall dan lowwall dengan nilai FK dan PK yang optimal. Dalam melakukan analisis kestabilan lereng diperlukan data hasil pengujian laboratorium, meliputi data sifat fisik dan sifat mekanik batuan. Data-data tersebut kemudian diuji normalitas dengan tujuan untuk mencocokan variabel menggunakan metode Kolmogorov - Smirnov menggunakan Software Statistika  SPSS  26.0.  Analisis  kestabilan  lereng  dilakukan  dengan  menggunakan  metode kesetimbangan batas Bishop disertai analisis probabilistik dengan menggunakan metode Monte Carlo dan Latin – Hypercube menggunakan Software Slide 6.0. Berdasarkan hasil penelitian, dapat diketahui bahwa batuan penyusun pada lokasi penelitian terdiri dari sandstone, claystone, siltstone dan coal. Klasifikasi kekuatan batuan tergolong sangat lunak. Geometri lereng tunggal yang aman yaitu  H = 15 m dan θ = 620 untuk sandstone, H = 10 m dan θ = 600 untuk claystone, H = 8 m dan θ = 600 untuk siltstone dan H = 12 m dan θ = 600 untuk coal. Sedangkan rekomendasi desain lereng untuk highwall A yaitu H = 95,79 m dan θ = 480, highwall B yaitu H = 90,61 m dan θ = 350, highwall C yaitu H = 95,00 m dan θ = 280 dan highwall D yaitu H = 78,30 m dan θ = 480  dan untuk lowwall A yaitu H = 105,64 m dan θ = 240, lowwall B yaitu H = 94,00 m dan θ = 220, lowwall C yaitu H = 113,66 m dan θ = 180 dan lowwall D yaitu H = 77,00 m dan θ = 400.

Kata Kunci: Kestabilan Lereng, Highwall, Lowwall, Faktor Keamanan (FK), Probabilitas Kelongsoran (PK)


Keywords


Kestabilan Lereng, Highwall, Lowwall, Faktor Keamanan (FK), Probabilitas Kelongsoran (PK)

Full Text:

PDF

References


Aditiawarman, 2015, “Analisis Statistikâ€, Jakarta.

Adnan, Fadjar, 2008, “Aplikasi Simulasi Monte-Carlo dalam Estimasi Biaya Proyekâ€, Jurnal Smartek.

Ahmad, Masagus A., dkk, 2011, “Aplikasi Probabilistik Untuk Analisis Kestabilan Lereng Tunggal (Studi Kasus di PT Tambang Batubara Bukit Asam Tbk. Tanjung Enim, Sumatera Selatan)â€, Prosiding TPT XX PERHAPI: Mataram.

Ahmad, Masagus A., dkk, 2018, “Pengaruh Geometri Lereng Terhadap Perolehan Batubara Tertambang di PT Arutmin Indonesia Site Kintap Kalimantan Selatanâ€, Seminar Nasional Pakar ke 1, Jakarta.

Anonim, 2018, “Pedoman Pelaksanaan Kaidah Teknik Pertambangan yang Baikâ€, Kepmen 1827K/30/MEM/2018, Menteri Energi dan Sumberdaya Mineral.

Arif, Irwandy, 2016, “Geoteknik Tambangâ€, Institut Teknologi Bandung: Bandung.

Aririzki, 2015, “Uji Normalitas secara Analitikâ€, Jakarta.

Bhina, Krahn, 2013, “Uji Normalitas Secara Deskriptifâ€, Jakarta.

Bishop, A. W., 1955, “The Use of Slip Surface in The Stability of Analysis Slopesâ€, Geotechnique, Vol 5., London.

Hoek, E., Bray, J. W., 1981, “Rock Slope Engineeringâ€, Institution of Mining and Metallurgy, London.

Hoek, E., Bray, J. W., 1987, “Factor of Safety and Probability of Failure, Chapter 8 – Rock Engineering King, H. 1982, “A Guide to the Understanding of Ore Reserve Estimationâ€, Australian Institute of Mining and Metallurgy, Australia.

Steffen, O.K.H., Contreras, L.F., Terbruge, P.J., Venter, J., 2008. “A Risk Evaluation Approach for Pit Slope Designâ€, the 42th US Rock Mechanics Symposium and 2nd US-Canada Rock Mechanics Symposium, San Fransisco.

Supandi, 2013, “Pemodelan Parameter Geoteknik dalam Merespon Perubahan Desain Tambang Batubara dengan Sistem Tambang Terbukaâ€, STTNAS: Depok.

Supriatna, Sam, dkk., 1980. “Pemodelan Parameter Geoteknik dalam Merespon Perubahan Desain Tambang Batubara Dengan Sistem Tambang Terbukaâ€, SEMNAS Ke-8 : Rekayasa Teknologi Industri dan Informasi, Yogyakarta.

Supriatna, dkk., 1995. “Peta Geologi Lembar Samarindaâ€, P3G, Bandung.




DOI: http://dx.doi.org/10.29313/pertambangan.v6i2.22271

Flag Counter    Â