Scoping Review: Pengaruh Paparan Asap Rokok terhadap Kadar Kotinin dalam Tubuh Perokok Pasif

Madinatul Munawaroh, Lelly Resna Nugrahawati, Annisa Rahmah Furqaani

Abstract


Abstract. Secondhand smoke is a product produced from the main smoke that is exhaled and the smoke from the tip of the cigarette that is still burning. Passive smokers who contain nicotine which will be metabolized into cotinine use the enzymes CYP2A6 Cytochrome P450, Family 2, Subfamily A, Polypeptides and distros in the body of passive smokers such as blood, saliva and urine. From the measurement results the increase in cotinine levels in the body of passive smokers. The impact of increasing levels of cotinins causes health problems such as lung cancer, oral cancer, asthma, chronic obstructive pulmonary disease (COPD), and coronary heart disease. The research objective was to analyze the effect of cigarette smoke on cotinine levels in the body of passive smokers. The research was taken using the scoping review method with the subject of national and international scientific articles that meet the eligibility criteria (elegible). The results in this study were taken from articles to be taken using PICOS, namely Population: Children of passive smoking found in journal articles, Intervention/Exposure:Secondary cigarette smoke, Comparison: Children who do not live with smokers, Results: Body cotinine levels in passive smokers, Studies (RCT, Clinical Trial, and Cross sectional). There are 6 articles that fulfill the eligibility (elegible). The conclusion of this study shows that exposure to passive smoking using cotinine concentrations taken in the body of passive smokers shows an increase in cotinine levels.

Keywords: Cotinine Levels, Secondary Cigarette Smoke, Passive Smokers.

Abstrak. Perokok pasif adalah orang tidak merokok namun ikut menghirup asap rokok dari orang-orang merokok disekitarnya. Produk yang dihirup dihasilkan dari asap utama yang dihembuskan dan asap dari ujung rokok yang masih membara. Perokok pasif memiliki kandungan nikotin yang akan dimetabolisme menjadi kotinin menggunakan enzim CYP2A6 Cytochrome P450, Family 2, Subfamili A, Polypeptide dan didistribusikan dalam tubuh perokok pasif seperti darah, saliva, dan urine. Dari hasil metabolisme mengakibatkan adanya peningkatan kadar kotinin dalam tubuh perokok pasif. Dampak peningkatan kadar kotinin menyebabkan gangguan kesehatan seperti lung cancer, oral cancer, asthma, chronic obstructive pulmonary disease (COPD), dan coronary heart disease. Tujuan penelitian untuk menganalisis pengaruh paparan asap rokok terhadap kadar kotinin dalam tubuh perokok pasif. Penelitian diambil dengan metode scoping review dengan subjek artikel ilmiah nasional dan internasional yang memenuhi kriteria kelayakan (elegible). Hasil pada penelitian ini diambil dari artikel yang akan dinilai secara PICOS, yaitu Population: Anak-anak perokok pasif yang terdapat pada jurnal artikel, Intervention/Exposure: Asap rokok sekunder, Comparison: Anak-anak yang tidak tinggal dengan perokok, Outcome: Kadar kotinin dalam tubuh perokok pasif, Studi: RCT, Clinical Trial, dan Cross Sectional. Artikel yang memenuhi kelayakan (elegible) ada 6 artikel. Kesimpulan penelitian ini menunjukkan bahwa pada perokok pasif menunjukan kadar kotinin yang meningkat.

Kata Kunci: Kadar Kotinin, Asap Rokok Sekunder, Perokok Pasif.


Keywords


Kadar Kotinin, Asap Rokok Sekunder, Perokok Pasif.

References


heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment. Environmental Science and Technology 2011, 45(1), 328-333. http://pubs.acs.org/doi/abs/10.1021/es102060v

Riskesdas K. Hasil Utama Riset Kesehatan Dasar (RISKESDAS). J Phys A Math Theor [Internet]. 2018; 44(8):1–200. Tersedia pada: http://arxiv.org/abs/1011.1669%0Ahttp://dx.doi.org/10.1088/17518113/44/8/085201%0Ahttp://stacks.iop.org/17518121/44/i=8/a=085201?key=crossref.abc74c979a75846b3de48a5587bf708f

Ferrante G, Simoni M, Cibella F, Ferrara F, Liotta G, Malizia V, et al. Third-hand smoke exposure and health hazards in children. Monaldi Arch Chest Dis - Pulm Ser. 2013;79(1):38–43.

Brcic Karaconji I. Facts about nicotine toxicity. Arh Hig Rada Toksikol. 2005;56(4):363–71.

Raja M, Garg A, Yadav P, Jha K, Handa S. Diagnostic Methods for Detection of Cotinine Level in Tobacco Users : A Review. 2016;10(3):4–6.

Drehmer JE, Walters BH, NabiBurza E, Winickoff JP. Guidance for the clinical management of thirdhand smoke exposure in the child health care setting. J Clin Outcomes Manag. 2017;24(12):551–9.

Sleiman M, Gundel LA, Pankow JF, Jacob P, Singer BC, Destaillats H. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smokehazards. Proc Natl Acad Sci U S A. 2010;107(15):6576–81.

Jacob P, Benowitz NL, Destaillats H, Gundel L, Hang B, Martins-Green M, et al. Thirdhand smoke: New evidence, challenges, and future directions. Chem Res Toxicol. 2017;30(1):270–94.

Adhami N, Chen Y, Martins-Green M. Biomarkers of disease can be detected in mice as early as 4 weeks after initiation of exposure to third-hand smoke levels equivalent to those found in homes of smokers. Clin Sci. 2017;131(19):2409–26.

Cheng CY, Huang SS, Yang CM, Tang KT, Yao DJ. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor. Biomicrofluidics. 2016;10(1):1–9.

Avila-Tang E, Al-Delaimy WK, Ashley DL, Benowitz N, Bernert JT, Kim S, et al. Assessing secondhand smoke using biological markers. Tob Control. 2013;22(3):164–71.

Centers for Disease Control. National Biomonitoring Program Biomonitoring Summary Lead. 2007;1-6. Tersedia pada: http://www.cdc.gov/biomonitoring/Lead_BiomonitoringSummary.html

Omara HA, Attaf SMM. I S S N 2278-4357 Spectrophotometric Determination of Nicotine in Cigarette Tobacco and Biological Samples of Smokers. 2014;3(8):1327–40.

Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am J Epidemiol. 2009;169(2):236–48.

Mariko Fukomoto, Nicotine II. II.6.5 Nicotine and cotinine. 2005.

Abidin E, Semple S, Omar A, Rahman HA, Turner SW, Ayres JG. A survey of schoolchildren’s exposure to secondhand smoke in Malaysia. BMC Public Health. 2011;11.

Hovell MF, Wahlgren DR, Liles S, Jones JA, Hughes SC, Matt GE, et al. Providing coaching and cotinine results to preteens to reduce their secondhand smoke exposure: A randomized trial. Chest. 2011;140(3):6819.

Jarvis MJ, Sims M, Gilmore A, Mindell J. Impact of smoke-free legislation on children’s exposure to secondhand smoke: Cotinine data from the Health Survey for England. Tob Control. 2011;21(1):18–23.

Wang MP, Suen YN, Wong BYM, Li WHC, Koh DSQ, Lam TH, et al. Paternal smoking and maternal protective behaviors at home on infant’s saliva cotinine levels. Pediatr Res [Internet]. 2018;83(5):936–42. Tersedia pada: http://dx.doi.org/10.1038/pr.2017.279

Tzatzarakis MN, Vardavas CI, Terzi I, Kavalakis M, Kokkinakis M, Liesivuori J, et al. Hair nicotine/cotinine concentrations as a method of monitoring exposure to tobacco smoke among infants and adults. Hum Exp Toxicol. 2012;31(3):258–65.

Luk TT, Wang MP, Suen YN, Koh DS quee, Lam TH, Chan SS chee. Early childhood exposure to secondhand smoke and behavioural problems in preschoolers. Sci Rep [Internet]. 2018;8(1):8–13. Tersedia pada: http://dx.doi.org/10.1038/s41598-018-33829-6

Siddiqi K, Huque R, Kanaan M, Ahmed F, Ferdous T, Shah S, et al. Children learning about secondhand smoke (CLASS II): A pilot cluster randomized controlled trial. Nicotine Tob Res. 2019;21(5):670–7.




DOI: http://dx.doi.org/10.29313/kedokteran.v7i1.26636

Flag Counter