Scoping Review: Pengaruh Bensin terhadap Peningkatan Kadar LDL pada Plasma Darah Tikus

Yola Noveraz Nasa, Santun Bhekti Rahimah, Nugraha Sutadipura

Abstract


Abstract. Gasoline consumption from 2000 to 2014 increased along with the increase in the number of motorized vehicles each year. Gasoline harms the environment in the form of pollution and on the health of lung, kidney, skin diseases, and changes in the lipid profile in the form of increased levels of low-density lipoprotein (LDL) which can increase the incidence of coronary and metabolic heart disease. This study aimed to determine the effect of gasoline exposure on LDL levels in human blood plasma starting with a study of experimental animals. The research method used is descriptive with a scoping review procedure by identifying, analyzing, and evaluating scientific papers according to inclusion and exclusion criteria and screening using eligibility criteria. The research results obtained ten articles from the initial number of 10,486 articles found from keywords. Ten PICO-compliant articles (Population: rats; Intervention: gasoline, lead or benzene; Comparison: rats not exposed to gasoline, lead or benzene; Results: LDL levels in blood plasma) showed increased plasma LDL levels in the group of rats exposed to gasoline, lead or benzene control group. This is due to oxidative stress from lead or benzene induction which suppresses antioxidant activity and increases reactive oxygen species in the body, resulting in liver injury, impaired lipoprotein metabolism. In the end, gasoline which has benzene or lead component causes an increase in plasma LDL levels. This study concludes that there is an effect of gasoline on LDL levels in rat blood plasma, and several components of gasoline that play a role, namely lead and benzene.

Keywords: Gasoline,  Benzene, Lead, Low-density lipoprotein

Abstrak. Konsumsi bensin sejak tahun 2000 sampai 2014 meningkat seiring dengan peningkatan jumlah kendaraan bermotor setiap tahun. Bensin memiliki dampak negatif terhadap lingkungan berupa polusi dan terhadap kesehatan seperti gangguan paru, ginjal, penyakit kulit, serta perubahan profil lipid berupa peningkatan kadar low-density lipoprotein (LDL) yang dapat meningkatkan angka kejadian penyakit jantung koroner dan sindrom metabolik. Tujuan penelitian untuk mengetahui pengaruh paparan bensin terhadap kadar LDL pada plasma darah manusia yang dimulai dengan kajian terhadap hewan coba. Metode penelitian yang digunakan yaitu deskriptif dengan prosedur scoping review dengan cara mengidentifikasi, menganalisis dan mengevaluasi karya ilmiah sesuai kriteria inklusi dan eksklusi serta diskrining menggunakan kriteria kelayakan (Eligibility Criteria). Hasil penelitian didapatkan sepuluh artikel dari jumlah awal 10.486 artikel yang ditemukan dari kata kunci. Sepuluh artikel yang sesuaiPICO (Population: tikus; Intervention: bensin, lead atau benzene;  Comparison: tikus yang tidak dipaparkan bensin, lead atau benzene; Outcome: kadar LDL pada plasma darah) menunjukkan peningkatan kadar LDL plasma pada kelompok tikus yang diberi paparan bensin, timbal atau benzena daripada kelompok kontrol. Hal tersebut diakibatkan stres oksidatif dari induksi lead atau benzene yang menekan aktivitas antioksidan dan meningkatkan reactive oxygen species di tubuh, sehingga terjadi cidera hepar, metabolisme lipoproteinpun terganggu. Pada akhirnya bensin yang memiliki komponen benzene atau lead mengakibatkan peningkatan kadar LDL plasma. Kesimpulan penelitian terdapat pengaruh bensin terhadap kadar LDL pada plasma darah tikus, dan beberapa komponen bensin yang berperan yaitu timbal dan benzena.

Kata kunci: Bensin, Benzena, Timbal, Low-density lipoprotein.


Keywords


Bensin, Benzena, Timbal, Low-density lipoprotein

References


Sa’adah AF, Fauzi A, Juanda B. Peramalan Penyediaan dan Konsumsi Bahan Bakar Minyak Indonesia dengan Model Sistem Dinamik. J Ekon dan Pembang Indones. 2017.

VanPutte C, Regan J, Russo A, Tate P, Stephens T, Seeley R. Seeley’s anatomy and physiology. Professional Educator. 2013.

Prawiradilaga RS, Shahib MN, Fatimah SN. Perbedaan Efek Infusa Bubuk Kedelai (Glycine max), Jamur Tiram (Pleurotus ostreatus), dan Campuran Keduanya terhadap Kadar Kolesterol LDL, Ekspresi Gen Reseptor LDL Hati, dan Berat Omentum Majus Mencit Model Hiperlipidemia. Glob Med Heal Commun. 2016.

Aberare OL, Okuonghae P, Mukoro N, Dirisu JO, Osazuwa F, Odigie E, et al. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes. N Am J Med Sci. 2011.

Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, et al. Endogenous antioxidants and radical scavengers. Adv Exp Med Biol. 2010.

Murray RK, Granner DK, Mayes PA, Rodwell VW. Harper’s Illustrated Biochemistry (31st Edition). Biochemical Education. 2018.

D’souza HS, Dsouza SA, Menezes G, Venkatesh T. Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J Clin Biochem. 2011.

Bonfim RR, Alves MIR, Antoniosi Filho NR. Fast-HRGC method for quantitative determination of benzene in gasoline. Fuel. 2012.

Cymbopogon citratus Stapf ( DC ) extracts alleviate gasoline vapour-induced metabolic disorders and cardiovascular disease risk in rats. 2016;160–9.

Abdel Fattah ME, Sobhy HM, Reda A, Abdelrazek HMA. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environ Sci Pollut Res. 2020;27(34):43028–43.

Sun H, Wang N, Nie X, Zhao L, Li Q, Cang Z, et al. Lead exposure induces weight gain in adult rats, accompanied by DNA hypermethylation. PLoS One. 2017;12(1):1–13.

Abdrabouh AE. Liver disorders related to exposure to gasoline fumes in male rats and role of fenugreek seed supplementation. Environ Sci Pollut Res. 2019;26(9):8949–57.

Alshareef AA, Ibrahim M. Neurological and Biological Toxicity of Subchronic Exposure to Benzene in Male Rats Aysha A . Alshareef and Maha Ibrahim. 2020;11:52–9.

Sedky A, Elsawy H. Protective Effect of Vitamins C and E against Gasoline Vapors Induced Haematological and Biochemical Changes in Male Rats. J Sci Res. 2015;7(3):139–49.

Abdou HM, Hassan MA. Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats. Biomed Res Int. 2014;2014.

Liu CM, Ma JQ, Sun YZ. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol [Internet]. 2011;49(12):3119–27.

Adegoke OA, M GOI, Bamigbowu EO, Ugbala JE. Evaluation of Lipid Profile in Male Albino rats exposed to petrol fumes. 2020;(July).

Mchale CM, Zhang L, Smith MT. Current understanding of the mechanism of benzene-induced leukemia in humans: Implications for risk assessment. Carcinogenesis. 2012.

Adeyemi WJ, Abdussalam TA, Abdulrahim A, Olayaki LA. Elevated, sustained, and yet reversible biotoxicity effects of lead on cessation of exposure: Melatonin is a potent therapeutic option. Toxicol Ind Health. 2020.

Gusnita D. Pencemaran logam berat timbal (pb) di udara dan upaya penghapusan bensin bertimbal. Ber Dirgant. 2012.

Winata SD. Dampak dan Monitoring pada Pekerja Terpapar Benzena. J Fak Kedokt Ukrida. 2015.

Burcham PC. An introduction to toxicology. Vol. 9781447155, An Introduction to Toxicology. 2014. 1–327 p.

Uboh FE, Akpanabiatu MI, Ebong PE, Essien EU. Effect of vitamins A and E on gasoline vapours induced atherosclerosis in male rats. Int J Pharmacol. 2011.

Mohamed Essam El-Din M. The potential role of flaxseeds on hyperlipidemia, oxidative stress and toxicity induced by lead acetate in adult male albino rats. 2015;31(31):51–70.

Ugwuja EI, Vincent N, Ikaraoha IC, Ohayi SR. Zinc ameliorates lead toxicity by reducing body Pb burden and restoring Pb-induced haematological and biochemical derangements. Toxicol Res Appl. 2020;4:239784732095656.




DOI: http://dx.doi.org/10.29313/kedokteran.v7i1.26299

Flag Counter